矩阵的奇异值的物理意义

----------

作者:郑宁 链接:https://www.zhihu.com/question/22237507/answer/53804902 来源:知乎 著作权归作者所有,转载请联系作者获得授权。

矩阵的奇异值是一个数学意义上的概念,一般是由奇异值分解(Singular Value Decomposition,简称SVD分解)得到。如果要问奇异值表示什么物理意义,那么就必须考虑在不同的实际工程应用中奇异值所对应的含义。下面先尽量避开严格的数学符号推导,直观的从一张图片出发,让我们来看看奇异值代表什么意义。

这是女神上野树里(Ueno Juri)的一张照片,像素为高度450宽度333。暂停舔屏先(痴汉脸 我们都知道,图片实际上对应着一个矩阵,矩阵的大小就是像素大小,比如这张图对应的矩阵阶数就是450333,矩阵上每个元素的数值对应着像素值。我们记这个像素矩阵为

现在我们对矩阵进行奇异值分解。直观上,奇异值分解将矩阵分解成若干个秩一矩阵之和,用公式表示就是:

其中等式右边每一项前的系数就是奇异值,和分别表示列向量,秩一矩阵的意思是矩阵秩为1。注意到每一项都是秩为1的矩阵。我们假定奇异值满足(奇异值大于0是个重要的性质,但这里先别在意),如果不满足的话重新排列顺序即可,这无非是编号顺序的问题。

既然奇异值有从大到小排列的顺序,我们自然要问,如果只保留大的奇异值,舍去较小的奇异值,这样(1)式里的等式自然不再成立,那会得到怎样的矩阵——也就是图像?

令,这只保留(1)中等式右边第一项,然后作图: 结果就是完全看不清是啥……我们试着多增加几项进来:,再作图 隐约可以辨别这是短发伽椰子的脸……但还是很模糊,毕竟我们只取了5个奇异值而已。下面我们取20个奇异值试试,也就是(1)式等式右边取前20项构成 虽然还有些马赛克般的模糊,但我们总算能辨别出这是Juri酱的脸。当我们取到(1)式等式右边前50项时: 我们得到和原图差别不大的图像。也就是说当从1不断增大时,不断的逼近。让我们回到公式

矩阵表示一个450333的矩阵,需要保存个元素的值。等式右边和分别是4501和333*1的向量,每一项有个元素。如果我们要存储很多高清的图片,而又受限于存储空间的限制,在尽可能保证图像可被识别的精度的前提下,我们可以保留奇异值较大的若干项,舍去奇异值较小的项即可。例如在上面的例子中,如果我们只保留奇异值分解的前50项,则需要存储的元素为,和存储原始矩阵相比,存储量仅为后者的26%。

下面可以回答题主的问题:奇异值往往对应着矩阵中隐含的重要信息,且重要性和奇异值大小正相关。每个矩阵都可以表示为一系列秩为1的“小矩阵”之和,而奇异值则衡量了这些“小矩阵”对于的权重。

在图像处理领域,奇异值不仅可以应用在数据压缩上,还可以对图像去噪。如果一副图像包含噪声,我们有理由相信那些较小的奇异值就是由于噪声引起的。当我们强行令这些较小的奇异值为0时,就可以去除图片中的噪声。

----------

results matching ""

    No results matching ""